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ABSTRACT
o790t
The analytical formulation of the optimum (minimum
fuel consumption) solution for docking with an earth satellite
culus of variations and includes the equations for target
and chaser motion, the Euler-Lagrange equations, boun-
dary conditions and corner conditions. All equations are
developed in three dimensions. The solution of a two-
dimensional set is described based on the use of an ideal-
ized two-impulse transfer to establish a starting point for

the iteration process. '4 ,ULQDO
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1.0 INTRODUCTION AND SUMMARY A

This study describes the use of calculus of variations for obtaining

 fuel optimum rendezvous trajectories in order to accomplish docking be-

tween a chaser vehicle and an earth satellite. Docking is defined as that
part of the mission which extends from chaser acquisition of the satellite
to actual achievement of the rendezvous. The complete three dimensional
mathematical formulation is defined. The calculus of variations model
used is based on the problem of Lagrange and includes the equations of
motion for target and chaser vehicle, the Euler-lagrange equations, boun-

—
</

dary and corner conditions, —

A two dimensional model was derived on the basis of the three dimen-
sional model and implemented on a digital computer. The initial values of
the Lagrange multipliers were selected based upon the solution of an idea-
lized two-impulse transfer. These multipliers yield satisfactory intercepts
of the target for various selected intercept times. Due to the sensitivity
of the multipliers, the definition of the thrust needed at intercept in order
to match velocities and yield a truly optimum solution required a prohibi-
tive amount of computation time. For example, an error in the seventh
significant place of the switching function changed miss distance by approx-
imately 200 feet. It is also shown below that fuel consumption is very in-
sensitive to intercept time. These results are due to the type of trajectories
flown. The target vehicle is in a circular orbit, and the eccentricity of
the chaser orbit is on the order of 10~4, Thus, the relative velocities at
intercept are almost negligible,

2,0 PROBLEM FORMULATION

Mathematical formulation of the docking problem was accomplished
in two parts: (1) the derivation of the equations of motion for the target
and chaser, and (2) the development of the Euler Lagrange equations and
transversality conditions for the variational problem (optimization).
These analyses are discussed separately below,

2.1 EQUATIONS OF MOTION
The equations of motion for the target and chaser are derived in

Appendix A in terms of ''state variables' (x,y, ;c, ;r, etc.) for two coordinate
references. One coordinate reference, designated as the x,y, z system,




is an earth-centered inertial set with the y axis along the local vertical
at the initial condition point; the x axis along the horizontal of the launch
plane at the initial point, and the z axis completing a right-handed set.
The other coordinate reference, is an instantaneous set, centered in the
chaser with the y axis along the longitudinal axis of the chaser; the x and
z axis are chosen so that the resulting coordinate system is parallel to
the inertial set initially, These equations of motion are based upon the
following model:

1. Spherical earth

2. Inverse gravity law

3. The only forces acting on the chaser are thrust and gravity

4. The only force acting on the target is gravity

5. Rotation effects on chaser are ignored

6. Constant fuel burning rate

7. The center of mass of the chaser is fixed with respect to the chaser

8. The target is in a non-impacting, low altitude earth orbit

9. The chaser is initially in a near-identical orbit to that of the target.

The equations defining the motion of the target moving in an elliptic
trajectory over a spherical earth are written in the inertial coordinate sys-
tem with the six orbital elements (semi-major axis, eccentricity, etc.)
as parameters, Since these equations cannot be readily solved for the
state variable (x,x,y,y, etc.) an iterative procedure based on a Taylor
series expansion is defined for computing the state variables as a function
of time.

The equations defining the motion of the chaser are written with the

constraint that the thrust vector lies along the chaser longitudinal axis
only,




2.2 THE VARIATIONAL PROBLEM

The Euler-Lagrange equations for the variational problem are developed
in Appendix B, using minimization of fuel consumption as the optimizing
criteria, The equations are constrained by the condition that the mass flow
rate is bounded by maximum and minimum values; and that optimum solu-
tions consist only of subarcs of maximum and minimum mass flow rates.
The switching condition is derived along with the relationship between the
thrust vector and the inertial coordinates.

The fourteen first order differential equations defining the problem
require 15 boundary conditions for their solution, since the intercept
time is not defined. These boundary condition are defined in Appendix B,
in terms of state variable notation, for the desired terminal conditions
of the docking problem. The Erdmann-Weierstrass corner conditions,
and the Weierstrass condition for the existance of a minimal value are
also applied to the problem.

3.0 COMPUTER FEASIBILITY SOLUTION

The feasibility of the complete three dimensional formulation, dis-
cussed above, was checked by simplifying the formulation, implementing
the resulting equations on a digital computer, and computing trial solu-
tions. The simplified formulation involves a two dimensional model (chaser
and target coplanar) with the target in a circular orbit; the equations for
this simplified formulation are given in Appendix C.

In order to obtain the trial solutions, it is necessary to determine
initial conditions for the Lagrange multipliers. Since, for large thrust/
mass ratios, the optimum trajectory will be close to an idealized two-
impulse transfer, the two impulse transfer was solved to obtain initial
estimates for the Lagrange multipliers. A Runge-Kutta iterative technique
can be used to converge the solutions from the initial estimates to the
desired values, assuming the initial estimates are sufficiently accurate
to allow convergence.

As described in Appendix C, an investigation was carried out on the
effect of the initial conditions in the Lagrange multipliers on intercept.
The results of this investigation indicated that the fuel consumption re-
quired for the two-impulse transfer was very insensitive to intercept time;



conversely, very small variations in the magnitude and direction of the
velocity impulses have very large effects on the rendezvous point. This
implies that the initial values of the Lagrange multipliers are similarly
sensitive in the non-impulse transfer., This was demonstrated for the
following specific case:

Target altitude = 200 n mi.
Thrust = 30,000 1b.

Specific impulse = 440 sec.
Initial chaser altitude = 374.0 km

Initial chaser velocity magnitude 6.98 km/sec.

-1.40 deg.

]

Initial chaser flight path angle

Initial central angle between
chaser and target

1 deg.

First of all, a value of ng = 1, 38291 (Initial thrust direction) was found
from the impulsive transfer solution. Variations in the multiplier ng were
studied in terms of its effect on changes in the intercept position. These
results are shown in Figure 1. The extreme sensitivity of intercept posi-
tion to ;']0 is immediately obvious.

On the basis of computer runs of this type, initial values of the multi-
pliers may be chosen and used for the computation of the rendezvous tra-
jectories. These rendezvous trajectories are shown in relative coordinates
in Figure 2. £ and { are the position of the chaser relative to the intercept
target position. The initial conditions are the same as for the previous
figure. Only the trajectory near intercept is given. Two things should be
noted. First of all, for a proper choice of the Lagrange multipliers found
from the impulsive transfer case, miss distances may be made negligibly
small. Secondly, a change in the seventh decimal place for the Lagrange
Multiplier I“0 changes the miss distance from 20 to 270 feet, for this
particular case. Therefore, any future changes in the multipliers in order
to obtain true rendezvous (zero relative velocity) would be exceedingly
difficult to perform. The use of the Runga-Kutta technique to obtain a
convergent solution would be impractical.




02 Jo uordouny ® se Ixaseyd jo uoryisod jdadsaajur xenduy [ aandrg

9L St 4 £l Zl 41 ol 6 8 L 9 ) 14 €

\ 1628¢°L = U

0§l

091

041

08l

06l

(S33¥934Q) — NOILISOd Ld3IDAUILNI ¥VINONY




§9JEUIPIOOD) IATIR[SY UL §110303[RI] SNOAZIPUdY g 2andtg

(1334) - 2

002 00t 0 00t — 00Z— 00E— O0F— 00§~ 009~ 00, — 008 —

008 004 009 005 ooy 00€
00s —

ooy —

00¢e —

00Z —

(1]0] e

(1334) - 2

139odvl
001

00?

00€

0020858000 =° ] ¢ 6000°0 — = 1628571 = °,

0,6085800°0 = ] 1 3ISVD , 0 =y oL="Y
ooy

00S




4.0 CONCLUSIONS

In the cases where the initial positions of target and chaser are close
together and large thrusts are available, the two-impulse solution to the
rendezvous trajectory provides a simpler solution than the calculus of
variations model with negligible effect on fuel consumption, Furthermore,
these cases are ones in which the boundary value problem becomes most
difficult, since iterative procedures based on first order approximations
to the Lagrange multiplier initial conditions are wholly inadequate unless
the solution is essentially known to begin with. The Lagrange multiplier
method becomes more significant as the initial orbital conditions become
separated or the thrust levels become quite small.

Another possible approach to the problem would be to start with
Equations (5-2) (Appendix C) as the equations of motion, with f set equal
to zero, and derive the Euler-Lagrange equations accordingly. The re-
sulting boundary-value problem may not be so critical, and hence, solv-
able by conventional methods.




APPENDIX A
CHASER AND TARGET EQUATIONS OF MOTION
1.0 INTRODUCTION

The equations of motion for the target and chaser are derived in this
appendix. Section 2.0 defines the coordinate reference systems and the
relationships between the coordinate systems. Section 3.0 defines the
chaser equations, and Section 4.0 defines the target equations. Since the
target equations cannot be readily solved for the state variables, an iterative
procedure is defined in Section 5.0 for computing the state variables as a
function of time.

2.0 REFERENCE SYSTEMS
2.1 PLUMBLINE SYSTEM

The plumbline system as shown in Figure A-1 has its origin at the
center of the earth with the y axis parallel to the gravity gradient at the
point of launch. Assuming a spherical earth and an inverse gravitational
field, this axis passes through the point of launch. The x axis is parallel
to the earth fixed chaser launch azimuth at the launch point. A right hand
coordinate system is now formed by properly choosing the z-axis. This
system is denoted by

2.2 CHASER VEHICLE SYSTEM

The chaser vehicle system of coordinates is defined by having its ori-
gin at the center of gravity of the chaser and the y)s axis along the longitudinal







axis of the chaser as shown in Figure A-2. The x , and z , axes are chosen
so that the resulting coordinate system is parallel to the p%mbline system
at launch. This system is denoted by

2.3 COORDINATE TRANSFORMATION

* As the chaser moves in flight the two coordinate systems are related
through pitch (Xp), roll (x,), and yaw (x,). For the geometry of this study,
this relationship is defined by the following transformation:

where
cosy coOs -siny cosy - cosy sinyx siny sinx_siny_ - cosx_sinx_cos
XP Xr P XY XP r Yy P Yy P Xr X
T
A = siny cosy cosy cosX - siny siny siny -cosX sinx - sinx siny cos
[ X] P r P y P r y P y p Xr X
siny cosy _siny cosy cosX
3.0 CHASER EQUATIONS OF MOTION

Considering the thrust in the XM coordinate gystem,

Newton's second law may be written in the form

10
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P 1 T — =
X = —| A +x 3-1
mR[ JFx (3-1)
where
mR = the mass of the chaser
;g = the acceleration vector due to gravity
x = the total acceleration vector.

The acceleration components of Equation 3-1 are shown in Figure A-3.
The problem formulation is based on the following assumptions:

1. Spherical earth

2. Inverse gravity law

3. The only forces acting on the chaser are thrust and gravity
4. Rotation effects on the chaser are ignored

5. Constant fuel burning rate

6. The center of mass of the chaser is fixed with respect to the chaser.

4.0 TARGET EQUATIONS OF MOTION

Given a target vehicle moving in the earth's central force field and a
chaser vehicle ascending to dock with the target, the condition for docking
requires that at the terminal point, the state variables of the chaser vehicle
match those of the target. The purpose of this section is to develop the
integrals of the target motion in the coordinate system chosen to describe
the chaser motion. This coordinate system, designated as the x-y-z system
is an earth-centered inertial set with the y axis along the local vertical of
the launch site, at time of launch; the x asix along the horizontal of the launch
plane at the launch site, and the z axis completing a right-handed set. In
this earth-centered coordinate system, the target motion is given by

12




Figure A-3 Acceleration Components
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2
X = fo'p ¥ (4-1)
-T2 2 2.3/2 )
(X +Y +2) !
g R 2Y
o o E
Y = - (4-2)
2 2 2.3/2
(X +Y +2) /
2
.. g R_Z
A 2372 (4-3)
(X +Y +2)
where
g, = the acceleration due to gravity at the earth's surface
RE = the mean radius of the earth.
Define the potential function
g.R.
o E
U = (4-4)
2 2 2.1/2
(X +Y +2) /
Now Equations (4-1), (4-2), and (4-3) can be written as
- U
C e — 4-
X 5% (4-5)
- ou
Y = — 4-6
oY ( )
= oU
= —— 4-7
z 57 (4-7)

Multiplying these equations by X, Y, and Z, respectively, and adding, yields

XX+YY+Z2Z = U

14




The integral of this yields the well-known expression for the conservation
of energy

2
g R
o . E C

2 2 2.1/2
(X+Y+Z)/ 1

1720 %)% + (0% + (2)7] -

By takigg 1_:_}_1e vt_a_E:tor_Product of Equations (4-5), (4-6), and (4-7) with the
vector r = 1X + jY + kZ and observing the vector identity

. »
-
r

T x =0
three additional integrals are obtained:
Yé - Z‘.[ = C2 (4-9)
Z).( - Xé = C3 (4-10)
X;’ - Y;( = C4 (4-11)

It can readily be shown that Equations (4-9), (4-10), and (4-11) represent

the other conservation law in component form, the conservation of angular
momentum. To develop the remaining two integrals, it is observed first
that by multiplying Equations (4-9), (4-10), and (4-11) by X, Y, and Z,
respectively and adding, yields the equation

C,X+C

5 ;,Y+C,Zz = 0 (4-12)

This equation states that the motion of the vehicle will be contained in a
plane passing through the origin. It will prove convenient to define this

plane by the following transformations:

! x \ /cosQ 0 -sinQ\| x|\

A L
; i i
Vo= 0 1 0 . !

, N

z1 ; \sinﬂ 0 cosfl/ ‘\.z i

15



0 0
x5 1 x]
YZ = 0 cos [ sin W Y1
z, 0 -sin W cOS z,

The combined transformation matrix becomes

x cos sin p sin @ cos p sin 2 X,
Y = 0 cos P -sin p Y, |[(4-13)
z -sin Q sin p. cos Q cos p cos Z,

It is noted that when the ferry is launched exactly into the target plane
of motion, both angles 2 and p are zero, otherwise the target moves in
the x, - yp plane. Thus the total angular momentum vector is along the
z, axis. Using the transformation (4-13), the components of angular

momentum CZ’ C3, and C4 in Equations (4-9), (4-10), and (4-11), become
I
C2 = hcos p sinQ
= i 4-14
C3 h sin p S ( )
C4 = h cos p cos

where h is the angular momentum of the target.

The target motion can be described in polar coordinates by rotating
the x, and y, axes through an angle 0 about the z; axis, such that the

transformed axis x5 is in the direction of the radius vector from the target.

This transformation is given by

x3 cos O sin © 0 2
Y3 = -sin © cos 6 0 Y2 (4-15)
23 0 0 1 z2

16




In the x z_, system, the angular momentum is given by

2" Y27 %

X,¥,-Y,X, = h (4-16)

Using transformation (4-15), Equation (4-16) becomes

%6 = h (4-17)

From geometry rzéz = 2A
where A is the area swept out by the radius vector.
Integration of Equation (4-17) yields

2A = ht+ C5 (4-18)

The remaining integral can be found from the energy integral, Equation (4-8),
by writing it in polar coordinates (r, 0)

2
2g R
-2 2 - 2 1
(1)¢+ () = _._°;_E_. +C, (4-19)

Where

C . 2C

1 1

Since

. -+ dr

r=9% 3
and from Equation (4-17)

. h

8 = 3

r
Equation (4-19) can also be written
4
2 2g R 2r3 C 1r
dr 2 o E 1
ﬁ +r = > + > (4-20)
h h

17




Solving this for dr_ and separating variables

de
de _ -d (\h'/r)‘
- : ZR 2 R 2 21/2
[ 1 8 T <go E h }
C1 + > - —_
h h r
Integrating this
-1
8 = cos  (“/B) + 0 (4-21)
where
2
go RE h
-u = - -
h
and
2 4
g R
BZ = Cll + _.9__2_E:—
h

Solving Equation (4-21) for r, the familiar equation for a conic in polar
coordinates with the origin at one of the foci is obtained;

2 2
h /g RE
r = 102 (4-22)
Cl h
1+ ——-2;—1+lcos(9-60)
& “E

The form of this conic is determined by two constants of motion which are
generally defined as

2 2
p = h/gR (semi-latus rectum)
o E
Cllh2
e = I+ ——g— (eccentricity)
go RE

18




The Constant Of integra.tion iS defined by
= = p when =1
o E (o] ’

where 60 denotes the orientation of the semi-major axis with respect to
the x5 axis.

Since the case of target motion in an elliptic trajectory is of interest,
Equation (4-22) can be written in the rectangular coordinates X 0 Ve

2 2
X Y

; +
a b

=1 (4-23)

o
2
where a and b are the semi-major and semi-minor axes of the ellipse,
respectively. If we arbitrarily choose the two constants of motion as a
and e, Equation (4-23) becomes

2 2
' Y

Xo o
5— t 5 5 =1 (4-24)
a a (l-e)

To write Equation (4-24) in the x-y-z system, it is noted that

Xo = XZ cos 90 +Y2 sin 90

Y
o

-X2 sin 90 + Y‘2 cos 90

and from the transformation (4-13)

X2 = XcosQ -2 sinQ

YZ=XsinpsinQ+Ycosp+Zsinp.cos$2
Then,

XO = (X cosQ - Z sin ) cos 90

+(X sinp sinQ + Y cos p + Z sin p cos Q) sin 90
Y = -(XcosQ-2ZsinQ) sin 0
o o

+ (X sinp sinQ2+ Y cos p + Z sin p cos §2) cos 90

19



Substituting these expressions into Equation (4-24), the trajectory becomes

1

2
a

[(X cosfl - Z sin Q) cos 90
. . . . 2
+(X sin b sin® + Y cos p + Z sin p cos ) smGo:]

P S l: - (X cos® - Zsin® ) sin 6 (4-25)

2 2
a (l-e)
. . . 2
+(Xsmpst+Ycosu+251npcosQ)coseo -1 =0
This is the equation for elliptic motion in the %, y, z coordinates.

To obtain integral (4-18) in terms of the x-y-z coordinates, consider the
sketch shown in Figure A-4.

From the geometry,

Area AFP = Area AFQ
Area ellipse Area circle
and
DA = a(l-e)-X
o

To compute area AFQ, note:

DQ =Y a/b
o
Area FDQ = X Y X a/b
2 o o
Yoa/b
tan M = 27X
o
2 2 Y al/b
a M a -1 o
A = == — =
rea CAQ > > tan e +XO

20
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Figure A-4 Geometry of Target Orbit
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Area CDQ = -l-(ae+X)Y a/b
2 o o)

Area AFQ = Area CAQ - Area CDQ + Area FDQ

Substituting from above

aZ 1 Yo/ l-e eYo
Area AFQ = == (tan p——— - > )
o a l-e
Then, >
aZ 1_eZ 1 Yo/ l-e eYo
Area AFP = ——— (tan - —)
2 ae + XO a 1-e

After transforming coordinates, Area AFP can be written in terms of X and
Y

Area AFP = ——s—— tan |
X (sin p sinQ cos 60 -cos _sin 90) + Ycos u cos 90+ Z)sinp cos§2 cos 90

+ sin Q sin 6 )
o

ae + X (cos Q cos 60 + sin p sin Q sineo)+ Y cos n sin90+ Z (sinp cos Qsineo
- sin cos 0 )
- o

e

a l-e

+ sin p cos Q cos 90) :}

Substituting this into Equation (4-18) and noting that

h = R ag l1-e

22

[X(sinp sinQ2cos ® -cossin® )+ Y cosp cosB® +Z(sinQsinb
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the final form of this integral becomes

(4-26)

X(sin p sin Q cos 90 -cos Q sin 60) -Y cos p cos 90 + Z (sinu cosQcos 00

+ sin Q sin 90)

ae +X (cos Q2 cos 6 + sin p sin Q sineo) +Y cosp sin® + Z (sin p cosﬂsineo
o o

- sinQ cos O
o

e
- ::—2— I:X (sin p sin  cos 60 - cos sin60)+ Y cosp cos 60

T 2
. . : = 1- -
+ Z (s5in Q sin 90 + sin p cos Qcos Bo)jl RE ag e (t 'rp)

where Tp is the time of perigee crossing.

Summarizing the results; for a target moving in an elliptic trajectory
over a spherical earth with the trajectory defined by a, e, ,0, 6 , and T,
the following equations completely define the motion of the target in the
chaser coordinates of the ferry:
2 2
) ) g R g, R
%[(X)Z+(Y)2+(Z)2}- —E s 2= -0 (4-27)
X +Y2+2 2a

. - : 2 .
YZ - 2Y - RE Vago VI-e cos p sinQ = 0 (4-28)

23



. , 5
zX - Xz +RVag V1 -e sinp =0 (4-29)

f 2
XY - YX - RE\/ ag_ l1-e cospy cosQ+0 (4-30)

2

L [x(cos Q cos 60 + sin p 8in @ sin 60) + Y cos pu sin 90
a

2
+ Z(sin yu cos 2 sin 60 - 5in 2 cos 90)}

(4-31)
1 . . .
+—-2———2—-[X(sm p sin Qcos 60 - cosQsin 60) +Y cosp cos 60
a (l-e)
2
+ Z(sin @ sin 90 + sin p cos Q cos 90)—l -1 =0
221 - e? tan 1 (4-32)

2
v1-e

X(siny sinﬂcoseo-costineo)-YcosP, COSGO+Z(Sinp, cochosGo+sianin60)

ae+X(cosﬂcoseo+sinp sinﬂsineo) +Ycosp sineo+Z(sin|_L costineo- sinSZcoseo)

c [X(sinp_ sin cos® -cos sin@® )+Ycospy cos® +Z(sinQsind
2 - o - o o o

aVl-e
+sin p cos Q cos eo)} -RE«/aLg0 l-ez (t-tp) =0

For the docking problem considered, these equations become the set of
terminal conditions for the chaser.

5.0 SOLUTION FOR FINAL CONDITIONS

For the target orbit, orbits with very low eccentricities are considered.

Furthermore, it is assumed that the angles @ and p are small. Since the

Equations (4-27) through (4-32) cannot readily be solved for the state variables

X, Y, Z, X, Y, and Z, the circular orbit solution withQ =0, andp =0 is
considered as the first approximation. Denoting this solution by barred
quantities:

24




Y = T sin (0 +a) (5-2)
—*— ———
X = Vcos (eo +a) (5-3)
? = --{f_ sin (90 + @)

zZ =0

Z =0

where the parameter o is specified (specified docking time) and is given by

a - a372
2
k = gORE

The parameters T and V can be considered as the mean orbital radius and
the mean orbital velocity, respectively.

To obtain the exact solution, a linear iteration based on a Taylor series
expansion is considered. Given a function

F = F(Xl, XZ’ X3’ X4, Xsr X6) = 0’
its expansion about an approximate solution becomes
F(Xl, XZ’ X3 X4, X5, X())
0 9 9
+__F_AX +——F AX +.....+-——-—F AX
8X 1 ax 2 8X 6
1 2 6

+ higher order terms = 0

’E’ a'c-.f-

with the partial derivatives evaluated at -)?1 2 6

25




For n simultaneous equations,

211 212 213 14 215 216 in
aZl aZZ ® o
a.nl anz ..... ann

considering only first order terms,

1 10
AX, Fo0
AX F

n no

where the coefficients a_  are the partial derivatives evaluated at the ap-
proximate solution, and F, , denotes the function F, evaluated at the approxi-

mate solution,

After obtaining the first solution from Equations (5-1) through (5-6),
the solution would proceed by solving each iteration cycle for the changes

AX .
n

For the six simultaneous equations considered, the coefficients a .

are given by:
2

. 2k“X
11 =2 <2 =213
[X" +Y +z]/2
.. 2K2Y
12~ (=2 , =2  —=2,3/2
(X" +Y +27]
2K°Z
a =

13 = =2 =2 =2

[X" +Y +z]3/2

214 2X
a5 = ¥
a1 = 27
a,, = 0
2, = L
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51
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N

— 2 2 —_
Z{X(cos Q4+ sin2 p sin Q)+ Ycosp sinp sinQ
- . 2 2 4 —
-Z sinQcosQcos pu + (e +e ) X(cos Q cos 6,
- sinp sin Q sin 60) - Y cos p sin 60 - Z(sin Q cos 90

+ siny cos Q sin 60)] (cos 2 cos 90 - sin p sin 2 sin 90)}
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— — 2 —_
ag, = Z{Xsinp sincosyu + Ycos p +7Z siny cos Q cos p
2 4 .— . . .
- (e” + e )[X(cos Q2 cos 6_ - sinp sin@ sin 0.)

-_ - -_ - + . - -
Ycosy sin@ Z(sinQ cos 60 sinpy cosQ smeo)] cosp s1neo}

ag, = 2{-§coszp sichosQ+?cosH siny, cosQ +E(sin29+sinzp_ cosZQ)
- (e2 + e4)[§(cos Q2 cos eo - sin y sin  sin eo) -Y cos pu sin eo
- Z(sinQcos 6 +sinp cosQ sineo)](sinﬂ cos@_+sinp cosQ sineo)}
agy = 0
a55 = 0
a.56 = 0
ag = T/'—Ilf;i[ ae(cosf2cos 60 - siny sinQ sineo) +Y cosp cosQ
+Z sin wlfae + X(cos Q sin o+ sin u sin Q cos eo)
+Y cos pu cos 60 + Z(sin L cos 2 cos 90 - sin Q sin 60)] -2
- sec’ ——e—z[-}z(cos Qcos® - sinyp sinQ sin 6 )
a/l-e © °
- Y cos i sin 6, - Z(sin Q cos 90 + sin  cos @ sin 60)]
- Tk-it (cos Q2 cos 6, - sin y sin Q sin 60)
a
a,, = -J_——I—E[-ae cos p sin o, - X cos Q cos p + Z sin Q cos ]
l1-e

[ae + X(cos 2 sin ® + sin . sinQ cos 90) +Y cosp cos @
o

, , -2
+ Z(sin . cos Q cos €~ sin Q sin © ]
o o

+ secz ———e—-—[f(cos 2 cos eo - sin . sin Q sin 00)

a\/-l-e2

- x * - — - + . Q .
Y cosp sin®_ - Z(sinQ cos 8 _ + sinp cos Q2 sin 90)]

k .
-;377 t cos smeo




1 . . . < .-
2,3 -——Z[ -ae(sin  cos ®, +sinp cos @ sin 90) - X sin g

V1-e

- Y cos py sin ﬂl[ae + X(cos Q sin 60 + sin p sin Q cos 90)

+Y cos j COS eo + Z(sin p cos Q cos 90 - sin  sin E)o)]-2

2 e rs . . .
+ sec —ﬁ-[X(cos Qcos @ - sinp sin@ sin eo)

a\/-l-e

- Y cos p sin e - Z(sin Q cos o+ sin p cos £ sin eo)]

k . . .
- -;—3—7-2-t (sin 2 cos 90 + sin p cos Q sin 90)

a64=0
agg = 0
age = 0

As defined X = X, X; = Y, X3 = Z, X4 = X, X5 = Y, Xy = Z
and F10: Fpgs ----- F¢o are Equations (4-27), (4-28), ..... (4-32)
respectively, evaluated at the successive approximations to the state
variables.



APPENDIX B
THE VARIATIONAL PROBLEM
1.0 INTRODUCTION

The Euler-Lagrange equations for the variational docking problem,
using minimum fuel consumption as the optimal criteria, are developed in
Section 2. 0. The terminal conditions for the docking problem are defined
in state variable notation in Section 3. 0. The Erdmann-Weirstrass corner
conditions are given in Section 4. 0. The Weirstrass conditions for the
existence of a minimum value are discussed in Section 5. 0, and the com-
position of extremal arcs are explored in some detail in Section 6. 0 to de-
termine the form of the desired solution with the conditions governing it.

2.0 EULER-LAGRANGE EQUATIONS

Using the nomenclature and coordinate system adopted above, the
orientation of the thrust vector is defined by the following transformations:

1
y = sin X cos X 0 Y,
z 0 0 1 Zy

x2 1 0 0 XM
- -sin X

Y, 0 cos XY sin - YM
i X

z2 0 sin Xy cos v ZM
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where x, y, z are unit vectors in the plumbline coordinate system and x__,
YM: ZpM are the unit vectors along the body axis of the chaser. The thrust
vector of the vehicle is defined to be along the yys axis.

The problem is restricted to subarcs flown at and between maximum
thrust and minimum thrust (maximum throttling). The thrust magnitude
is defined by

T = BV (2-1)

where Ve is the effective exhaust velocity and B is the propellant flow rate.
To obtain the optimum thrust vector program, the roll angle (X,) can be
arbitrarily chosen as zero. Then the components of the thrust vector in the
X, y, z system become

Tx = -(sin Xp cos Xy) B Ve (2-2)

T. = (cosX cosX )BYV (2-3)
b A P y e

T = (sinX )BV (2-4)
z y e

The three velocity components along the x,y, z axes are defined as Ug, Ug,
and Ug respectively, and the displacements as X;, X,, and X3. Then for
a central force field model, the first order set of differential equations
governing the motion becomes,

BV ' g R X
- e . o E 1
g, =U + —— sinX cos X + =0 (2-5)
1~ 4" "m P v Ik Z.x 2.x 2] 3/2
1 2 3
. BV goREZXZ
g, =U - cos X cos X + _ (2-6)
2 5 m P y I:XZ+X2+X2] 3/2=0
1 2 3
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2
BV g R X
g. = U, -—2sinX_ + ok 3 = 0 (2-7)
3 6 x.2ex. % ex 22
BRS! 2 3
g, = X, -U, = 0 (2-8)
g5 = Xz - U5 =0 (2'9)
g = X;-U, = 0 (2-10)

The vehicle's mass and the constraint on the mass flow are given by:

g, = m+8 = 0 (2-11)
2
gg = (B, -BNB-B) -y =0 (2-12)
where
Bu and BL = the upper and lower limits imposed on the allowable
mass flow rate, respectively
Y = a real variable introduced to satisfy the constraint

equation.
To minimize the fuel consumption, the integral
I = ‘gﬁdt (2-13)

must be minimized subject to the constraints given by equations (2-5)
through (2-12).
To this end, the following function is defined:

-

G=B+g'$: (2-14)

32




where

the eight-dimensional vector defined by Equations (2-5) through
(2-12)

o |
0

A = the eight-dimensional vector to be defined by the Euler-Lagrange
equation

0G d /929G
8q  dt (aq (2-1%)
where

q = the variables Ul’ UZ' U3, Xl' XZ' X3, m, B, Xp, Xy, and y.

Evaluating Equation (2-15), the following set of differential equations results:

)‘Z = )\5 (2-17)
Ny = A (2-18)
2 2
3
A, = fo E A (1 - "1
+ xZextex PPN x%ix%,x?
1 2 3 1 2 3
(2-19)
3 ZXZXI 3 3X3X1 ]
- 2 2 2 2 2
X" +X, +X, X +X, + X,
2 2
. 3X
o= s E [)\ (1 2 >
5 2 2372 |"2\ T L 2 2 2
[Xl +X2 +X3J X1 +X2 +X3
(2-20)
XX, 3N ,X,X, ]
T, 2 2 2 - 2 2 2
X T HX,T + X, X" +X, +X,
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2 2
3
N, = - o \-x (1 "3
6 2 2 2372173 2 Z 2
l_Xl +X2 +X3 | X1 +XZ +X3
(2-21)
E)Y 1X1X3 KN 2X2X3
-X2+X2+X2-X2+X2+XZ
1 2 3 1 2 3
BVe BVe BV
)\7::-)\1 2sinX cos X +)\2 ZcosX cos X +)\3 2sinX
m P y m p y m y
(2-22)
Ve Ve
0 = \,—sinX cosX -\A,—cos X cosX
1 m P y Z m P y
Ve (2-23)
- )\3—;sm xy+)\7 +)‘8('ZB +B +BL) +1.0
BV, BV,
0 = —— X, cosX cosX +—— 1, sinX cos X (2-24)
m 1 P y m 2 P y
BV, BV, BV,
0 = -—\,sinX sinX +——X_,cosX sin¥X --——1A, cosX
m 1 P y m 2 P vy m 3 vy
(2-25)
0 = Zy)\s (2~-26)
From Equations (2-24) and (2-25), the thrust direction is given by
tanX = -\_/\ (2-24a)
P 12
AE;
tan X = 5 > (2-25a)
M Y
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Equations (2-12) and (2-26) express the familiar condition that for subarcs

flown at either B = Bu or = BL'\ Ag = 0.

For this case, Equation (2-23) reduces to

Ve Ve A4
A,—sinX cosX -A,—cosX cosX -2\ —-EsinX +A_+1.0 =0
1 m P y 2 m P y 3 m vy 7

(2-23a)

This equation when using Equations (2-24a) and (2-25a) can also be written

v
L N L (2-23b)
m 1 2

A7 3

Thus the necessary conditions for an optimum solution are summarized
by the following equations:

. ven‘nF . T ..
X = p [AX} + X
R g
where
X = the three-dimensional vector with components X1, X2, and X3
Ve = the effective exhaust velocity
mR = instantaneous mass
m_ = mass flow rate
F
[_sin X cos X ]
b4
T
[A ] = | cosX cosX
X P
! sin X
X = Gl‘;i
g T
r = \/—i ° _)E
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The mass flow rate is given by

. . -0
mF + mR
The Euler-Lagrange equations are given by
X
. GM i
= - -3
N, aky (xlx1+xzxz+x3x3)—2]
r r
where
i =1,2,3
V m T [-sin X, cos X
— P
A = eF)\ cos X cosX3¥
7 2 P
m F sin X
Yy
The thrust direction is given by
X
tan X = L
2
A
tan Xy = > 3 >
R B
The switching condition is given by
V‘e T -sin Xp cos X -
r = — [)\} cos X cos X -\
mR P y 7
sin X
- _
where
. - e >
m., (mF)MAX when I">0
and
m_ = (mF)MIN when <0
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The boundary conditions are given att = O
X), = A
(X), = B
(mp), = C
att = tf
%), =D
X, =E
(\ 7)f = 1.0

It is noted that, in this general formulation, it is assumed that in the
optimum solution variable, thrust sub-arcs exist. If examination of addi-
tional conditions indicates a restricted form of the optimum solution, the
number of variables and equations will be reduced appropriately.

3.0 DEVELOPMENT OF BOUNDARY CONDITIONS

The terminal conditions for the docking problem are based upon the
equations of Appendix A. They are written here in state variable notation,
where the subscript '""f'" denotes the terminal value of a state variable.

2
zgoRE

2 2 2
by = (Ul + (U +(Uy)y - =—= 5 3
'ﬁxl)f X)) = (X3)e

(3-1)

2 .
442 = (XZ)f(U6)f - ‘(X3)f(U5)f - RE\/ agofl -e cosp sin@ = (:3-2)
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b, = (X AU,) - (X)) (Up) # R Va J smpL = 0 (3-3)

} 2
414 = (Xl)f(US)f - (X?_)f(U4)f - RE\/ ag_ 1-e cosp cosQ = ((;’-4)

l.|J5 = [(X ) (cos Q cos 9 + sin . sin Q sin 6 ) + (XZ)f cos p sin 60

. . . 2
+ (X3)f(51n B cos £ sin 90 - 5in Q cos 90)}
1 . . .
+—-———2— [(Xl)f(sm p sin Q cos 90 - cos Q sin 60)+(X2)fc05p, cos eo
(1-e)
2 2
+ (X3)f(s1n Q sin 60 + sin p cos Q cos eo)} -a =20 (3-5)
g, = 1:a.n-1 !
- . 2
6 v1-e

(Xl)f cosp coseo+(X3)f(s1np, co sﬂcoseo+51nﬂs1neo)

ae+(X

(sing smﬂcoseo-cosﬂmneo)- (XZ)f

(cosﬂcos90+s1np s1n951n60)+(X2)fcos|J, smeo+(X3)f(s1np. costmeo- smSZcosGo)

l)f

(]
—— =X

(sinp sinQ cos ® - cosRsin @ ) + (X
- e o o

1)f 2‘)f cCos p cos 90

+ . .. . Q - - t = o
(X,).(sin Q §in 0 + sinp cos @ cos 90) P)

3)f

At the initial point, the conditions can be stated formally as:

b, = (Xl)o -K, = 0 . _ (3-7)
bg = (X,) -K, =0 (3-8)
Yy = (X;) - K3 = 0 (3-9)
Yo = (U, -Ky =0 (3-10)
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b1 = (Ug), - K5 = 0
Yr2 = (Ugly - Ky = 0
bp3 = (m), - K; = 0

where to is chosen for convenience as zero.

Based on the theory of calculus of variations, the fellowing set of
boundary conditions have to be satisfied at the end-points for the problem
of Lagrange with variable end-points.

< of < agj - aLpp.
- 91 —J —* 3-14
f, "z [qi 34, *Z i %a. ]o *Z €. Bt 0 (3-14)
. 1 . 1 o o]
i=1 j=1 p=1
S af 9, oAy
- - —_ A 0 3-15
f¢ Z [qi 34, *Z LFETY ]f*Z T (3-13)
. i, i f
i=1 j=1 p=1
m P
0g. oy
_gi} _Z N5 1] +z € w= B -0 (3-16)
qds . Jog; 1, B qi(o::)
J=1 p,:l
m P
g oy
%f_] I 1] £ e k=0 (3-17)
UYly &~ J09 J¢ K 09;(f)
j=1 w=1

where the generalized variable q, represents the variables X;, X,, X3, --..,
and g. the equations gj, g3, -....» gg- The parameters € represent
constants to be determined from the above set of equations, and the parameter
f is the integrand of the integral to be minimized.

Evaluation of Equation (3-14) yields

)'(+)\}.(+)\).(+)\n'1] = 0
1 o

[-B+XIU +A,U. +2\,U, +) 5X5 63 7

4 275 376 4
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Evaluation of Equation (3-15) yields

-[-8 +>\1U4+x2U5+x3U6+x4x1+x5x2+x6x3+x7m]f- | ——

Evaluation of Equation (3-16) yields

Ny t€p = O
-y, tEqy = 0
_()\3)o+€12 =0
_()\4)O+e7 = 0 (3-20)
'()‘5)o+€8 = 0
-(x6)0+69 = 0
")y Ty = O

Evaluation of Equation (3-17( yields

(N )+ 2€0(U,), + €5(X5), - € (X, = 0 (3-21)
(o) + 2€,(U), - €,(Xg), + €,(X) = O (3-22)
( 5)g +2€,(Up), - €,(X)), - €3(X))p = O (3-23)
2e.g R 2(X)
1°0" E 1'f
(h glg* R SN T - €5(Up)g + €4(Ug)y
1)f ( 2'f ( 3)f
+ 2¢ [(X) (cos R cos 8 + sinp sinQ sin 6 )
> ° | © (3-24)
+ (XZ)f cos yu sin 60 + (X3)f (sin u cos Q sin eo - sin Q cos eo)]

(cos QR cos & + sin . sin Q sin 6 )
o) (o]
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where

2¢
5 . . .
t— [(Xl)f (sin p. sin Q cos eo - cos 2 sin eo)

(1-e)

+ (XZ)f cos p cos Bo + (X,). (sin @ sin 90 + sin y cos R cos eo)]

3)f

(sin p sin Q cos eo - cos © sin 0 )
° (2-24)

D(sinp sinﬁcoseo— cosﬁsineo) ~-N{(cosf2co seo+s ing sinSZsinGo)

+\/'1-’e2
2 1 2
D + N
2
l1-e
€6e
-———Z-(Sinp, sin2cos 8 - cosQ sineo) = 0
all-e °

(Xl)f(smp, sin R cos eo - cos  sin eo) - (xz)f cos u cos 90
+ (X3)f (sinpy cos @ cos 60 + sin © sin eo)
ae + (Xl)f (cos R cos 90 + sin p sin @ sin eo) + (XZ)f cos p sin eo

+ (X3)f (sin p cos © sin eo - sin Q cos eo)

2
2
elgoRE X

- 2t
5)s [(x T,

N 2]3/2 +e,(Up)y - €,(U
£

(\

3
Vs 2y X5

+ 265[(X1)f (cos Q cos eo + sin p sin Q sin eo) + (Xz)f cos p sin eo
+ (X3)f (sin u cos @ sin Go - sin Q cos 90)} cos p sin eo

2€
5 . ) .
-I---————(1 eZ) [(xl)f (sinp sinQcos 60 - cos sin Bo) + (Xz)f cow . COS 90
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+(X3)f (sin @ sin 6 _ + sin yu cos  cos eo) cos p cos 8
“6
e -Dcosp cos O -Ncospu sin$
2 o o
+\/’1—e
2 1 2
D + N
2
1-e
€6e
- 2(sinl.L sichoseo~costine) = 0
all - e ° (3-25)

with the parameters D and N as defined above.

2
2e.g R_. (X))
1°0" E 3'f
(gle 2l 0l ol - €,(Ugg +€3(U ),
Vs ( 2'f ( 3)f
+ ZGS(XI)f (cos R cos 90 + sin p sin Q sin eo) + (XZ)f cos p sin eo

+ (X3)f(sm|¢ cosQ sin 60 - sinf2cos 90) (sinp cosQsin 90 - sinQ2 cos eo)

2¢€
5 . ) -
+(-—-—-—-1 e?‘) [(Xl)f (sin sinQ2 cos 60 - cosQsin 60) + (Xz)fcos p cos eo

+(X,),(sin® sin eo +sinp cosQcos 60) (sin sin eo +sinp cosQcos 60):|

3)f
€

Vi-e

+

D(siny. co sﬂcoseo+sinﬂsin60)-N(sinp, cosﬂsineo- sinﬂcoseo)

€, ¢

- 5 (sin 2 sin ® + sin p cos Q cos 90) =0 (3-26)
a'l - e ©
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A,). =0 (3-27)

7)f

The six Equations (3-21) through (3-26) specify the constants €], €5, -+..-,
€,- Since these constants are now known, equations (3-21) through (3-26)
do not furnish any additional information. To determine the boundary con-
ditions for the 14 first order differential equations (2-5) through (2-11) and
(2-16) through (2-22), the boundary conditions can be most easily specified
by equations (3-7) through (3-13), (3-1) through (3-6), (3-18), and (3-27).

It is noted that a total of 15 boundary conditions are required, since the final
time (tf) is not specified.

4.0 CORNER CONDITIONS

It is_noted from Equations (2-5) through (2-12) that 64, :I:T5, :I:T(), ?.(Y’
Xp’ and B do not appear in the differential equations. Thus U4, Ug, Ugs
Xy Xp, and B are required to be only piecewise continuous in the interval
to<t<tg i.e., the extremal arc may have corners. At such corners, the
Erdmann-Weierstrass corner conditions must be satisfied. For the problem

considered, this implies that at such corners

xj(+) = A(-kj=12, ..... , 1 (4-1)
Equation (4-1) is a statement of that fact that the multipliers A1, \ 2,
..... » A 7 must remain continuous over the interval ty <t < tf.

5.0 WEIERSTRASS CONDITIONS

To explore the nature of the optimum solution in some more detail,
one of the necessary conditions for the existance of a minimum value of

tf

- (o

t
o

is now considered. This is the Weierstrass condition, which requires that
the function '

11
E = G(q* q)-G(q q)-Z(q*-ql)%g- (5-1)
i=1
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where G is defined by
G = B+g- X\, (5-2)
satisfy the inequality

E >0 (5-3)
The functions q;* denote functions q; subjected to finite admissable variations.
It is evident that functions whose derivatives appear in Equations (2-5) through
(2-12) cannot be subjected to variations. This implies that

U *=U,, U*=U_,, U6*=U

% = %k = % = ¥ = .
4 4 5 5 X X, X X, X X3’ andM m

6’ 1 1" 72 2 3

Evaluating inequality (5-3) yields

BT - B*I* 2 0 (5-4)
where
Ve
T e (- i i - (1
T m(xlcosXyszp+)\2coschosXy+)\3smxy) (I +x.)
(5-5)
Ve
T = —(-\,cosX *sinX *+\ _cosX %cosX *+\_sinX *)-(1+\ )
m " 1 y p 2 P y 3 y 7
(5-6)

Since inequality (5-4) must hold for all admissable variations, we consider
first

B = B*
X # X %, X # X *
Yy y P Yy
Inequality (5-4) becomes
-\, cosX sinX +X_.cosX cosX +\,sinX
1 y P 2 P y 3 y

-|-AN,cosX #sinX * +\_,cos X %cos X ¥+ X\ sinX*]?O
1 y P 2 P y 3 y

(5-7)
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Now consider

B+ Bx
X =X* X = X *
Yy
Inequality (5-4) becomes
(B-B¥xI'20 (5-8)
In equality (5-8) consider
B =8,
Then
(B, - BXI'Z 0 (5-9)
For 8 = B_, inequality (5-8) becomes

L
(B, - BHTZ 0 (5-10)

Considering the results to be drawn from the Weierstrass condition, note

first that the thrust vector orientation should be chosen such that for all

admissable variations in Xp and Xy, the function

-A.,cosX sinX +\X,cosX cosX +\_,sinX
1 y P 2 P y 3 y

is maximized at all times (inequality (5-7)).
Since by Equation (2-12)
* >
B> 8

B* < B_

(5-11)
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It follows from Equations (5-9) and (5-10) that

T'20 when B = Bu
< (5-12)
-~ 0 wh =
T when f BL
From Equation (2-23) also note that
T = xs(-ZB+Bu+BL) (5-13)

Applying conditions (5-12) to Equation (5-13), the following conditions are
obtained:

)\S[BL B Bu] o

(5-14)
<0

A B[Bu B BL]

Since by definition By > By, inequalities (5-14) imply that for the two cases
of B considered

A, S0 (5-15)

By application of the Weierstrass condition, inequality (5-15) can be shown
to hold for all values of .

6.0 NATURE OF OPTIMAL ARCS

The composition of the extremal arcs will be explored in some detail
to determine the form of the desired solution with the conditions governing it.

From Equation (2-26) the following must hold

x8 = 0, y # O;BL<B<Bu

Ng # 0hy = 0;8 =B orB = B,
or

)\8 =0,y = 0;8 = BLorB= Bu
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Considered first is the existence of a solution when \ g = 0. When Ag =
Equation (2-23a) applies; i.e., T = 0. For I'to remain equal to zero
I" must equal zero.

Differentiation of T yields

. V. X N, +X X +A, N

m 2 yJ pJ
/Vxl AT N

This can also be written
\'2

. e
' = — (-2, ,sinX cosX +\X_cosX cosX +)\,sinX 6-2)
m 4 P y 5 P y 6 y) (

1f I‘ is zero from Equation (6-1) or (6-2),

-A,siInX +X_cosX +\,tanX =0
4 P 5 P 6 y

or

PR )\5)\2 )\6)\3
+ + =0

2 2 2 2 2 2
\fxl A, fxl X, fxl LR

In general, this would be satisfied if

A,=A_=X,=0forx,# 0, \_# 0, A\, # 0

4 5 6 1 2 3

Referring to Equations (2-16), (2-17), and (2-18), this implies that

A 1 = const.
A 2 = const.
b 3 = const.

1

But if Ay =\ g =\¢ = 0, it follows that A4 =\g5=Xg = 0. Using Equations
(2-19), (2-20), and (2-21), this implies that A\ j = A2 = X3 = 0. But under
these conditions, no solution exists. Thus, in the optimum solution only
subarcs of minimum or maximum thrust can arise; i. e.,
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B = BLOI'

B = Bu only.

As was shown by application of the Weierstrass condition

il

<
TS0 when BL

B.»

u

il

>
T - 0 when B
then since no intermediate thrust levels can exist, the switching from

B =B tof = B

u

must occur when
=0 (6-3)

From Equations (2-24a) and (2-25a), the optimum thrust direction is given
by

tan Xp = —)\1/)\2 (6-4)
)\3
tan X o ———— (6-5)
2 2
LA SRS W

The Edmann-Weierstrass corner condition insures that the multipliers

Nys Nos eeeen » A g remain continuous at all times in the interval t St< te

This implies that tan Xp and tan X_ remain continuous throughout the solution.
However, Equations (604) and (6-5) admit jumps in Xp and Xy of magni-

tude w. This ambiguity is resolved by one of the results of applying the

Weierstrass condition which requires that the expression

‘A, cosX sinX +AN.cosX cosX +\,sinX
1 y P 2 P y 3 y

be maximized at all times.
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This then determines the principal values of X and X uniquely.
y
Thus it is shown that only subarcs flown at either minimum or maxi-

mum thrust exist for the optimum solution. The sign of the parameter T’
determines which value of (B = BL) or (B = Bu) applies.
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APPENDIX C

SIMPLIFIED FORMULATION FOR FEASIBILITY DETERMINATION

1.0 INTRODUCTION

The feasibility of the complete three dimensional formulation (dis-
cussed in Appendices A and B) was checked by simplifying the formulation,
implementing the equations on a digital computer, and computing trial
solutions. The simplified formulation is defined in Section 2.0, and a
two impulse (idealized) solution is given in Section 3.0 to allow initial guesses
for the Lagrange multipliers. Section 4.0 and 5.0 give some coordinate
transformations which ease computational difficulties.

2.0 SIMPLIFIED MODEL
2.1 GENERAL

A two-dimensional model derived from the three-dimensional model
defined above, is described in this section. It is this model which was
used as @ basis for a computer study to obtain optimum trajectories.

The target is assumed to be in a circular orbit, and the chaser is in
a coplanar orbit, nearly at the same altitude and trailing by a small central
angle. It is desired to obtain a fuel optimum rendezvous trajectory for a
fixed time to rendezvous. The geometry of this trajectory is shown in
Figure C-1. The radial distance of the target is rg; the initial radial dis-
tance of the chaser is rj,. The central angle between chaser and target at
commencement of rendezvous (launch) is ;. The anglar distance of the
chaser vehicle trajectory is .

In order to obtain the necessary fuel optimum trajectories, initial
conditions must be found for the Euler Lagrange equations given below
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POSITION

INITIAL TARGET
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RENDEZVOUS
TRAJECTORY

RENDEZVOUS

Figure C-1 Two-Dimensional Rendezvous Geometry
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2.2 TWO-DIMENSIONAL CHASER EQUATIONS OF MOTION

These equations are derived from Appendix B, Equation (2-5) through
(2-10):

X, -0, =0 (2-1)
X, - Ug =0 (2-2)
: BV goRé X,
U4 + sin X + > AREYE =0 (2-3)
[xl + xz]
BV g R2 X
g - cos X + 0O E 2 =0 (2-4)
5 m P 5 5 3/2
m +8=0 (2-5)

2.3 EULER LAGRANGE EQUATIONS

These equations are derived from Appendix B, Equation (2-16)
through (2-26):

A, = -1\ (2-6)

N, = - (2-7)

2 4
2 [ 2
gORE . : 3 x1 > 3NL,X X,
3 2 3/2 1 - 2 2 Y 2
[xl+x§:| }'(1+x2 x*l+x2

>~
[

(2-8)
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2 2
o 8oRE . 1 3 X, 3n X X, o0
4" 2 21 3/2 2 T2 2 ) 2 -
[;1+x2] X| + X, X +X,
. BVe
- - ; 2-10
)‘5 > )\‘1 s1nXp+x2cos Xp (2-10)
m
tan Xp = - xl /XZ (2-11)
\'
r- — [-Xx_sinX +\x_cosX | -x_ -1 (2-12)
m 1 P 2 P 5
B:BU when I > 0 (2-13)

B=BL when I < 0

3.0 TWOIMPULSE SOLUTION
Since, for large thrust engines, the optimum trajectory will be close
to a two-impulse transfer, the two impulse transfer case is now solved in

order to obtain initial guesses for the Lagrange multipliers.

The polar equation of a transfer orbit is, in general, given by

P
= — -1
g l+e cos v (3-1)
where

r is the radial distance

P is the latus rectum

e is the eccentricity, and

v is the true anomoly.
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At launch r = rj, and the corresponding true anomoly is Vi If § is the
central angle subtended between launch and rendezvous, then at rendezvous,
r=rpandv =vy +¢. This is shown in Figure C-2. Hence, substituting
launch and rendezvous conditions into Equation (3-1) and eliminating p
yields:

r - To

r o cos (VL + ) -r; cos v

(3-2)
L

where TS Tope

The constant angular rate of the target is given by V k/r,i, where
k is defined in Appendix B. Since the target moves through an angle - (po,
the time to rendezvous :s given by

r 3/2
T

—— (-9 ) (3-3)
k1/2 o

In general, the time of flight between two angular positions v; and v,
in an eliptical orbit is given by ‘

v

2
3/2 ’" 2'
P / e sinv 1 -1 Fl-e sinv
t= 1/2 2 " l4e cosv + 2 tan e+cos v (3-4)
k (1-e) | A 1-e
V1

Substituting v; = vy, v = vy + ¢, t =T, and eliminating p by substituting
v=vy +yandr = Ty into Equation (3-1), yields, from Equation (3-4):

q 3/2 1{
_[ l4e cos (VL+¢§] e sinv -1 l-e2 sinv

n
(1 - %)

y-¢ + ta
o l+e cosv 2 etcos v
v1-e

where e is defined by Equation (3-2). Equation (3-5) can now be solved
for vy, which then yields a value for e from Equation (3-2) and p from
Equation (3-1). Thus, the transfer orbit is determined.
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ORBIT
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Figure C-2 Geometry of Rendezvous Trajectory, T # T
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The solution fails if ry, =T sinc'e I:T cos (vL +¢) = ry cos vyp. For
this case, vy, = - /2 (or w - $/2). This is demonstrated in Figure C-3.

Substituting vy = /2, v] = -y/2, and t = T into Equation (3-4), and
allowing p/rT = l+e cos /2 yields:

_ 2(1+e cos¢/2)3/2 e sin /2 1 ¢ -1 VI-ezsian/Z)
P -¢o B 2 l+e cos /2 B 2 an etcos /2
1-e l-e
(3-6)

Equation (3-6) can be solved for e, This determines p, and thus the orbit
is again determined.

The magnitude and direction of the impulsive velocity increments at
launch and rendezvous can now be evaluated. If V_ is the magnitude of the
initial velocity vector, y its direction with respect to the local horizontal,
Vi, and yp the velocity magnitude and direction after the first impulse,
then the magnitude and direction of the first impulses given by, from
Figure C-4.

1/2
2
AVL = [VL + VZO - ZVo V. cos (yL - YO)J

(3-7)
_ VL sin y -Vocos Yo
B. = tan
L V. cos -V _ sin
L YL Vo Yo
where .
) tan'l e sin VL
Yy, = l+e cos \47
(3-8)
1
Vi = 2k rl - >
L 2p (l1-e )
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Figure C-3 Geometry of Rendezvous Trajectory, Ty = To
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Figure C-4 Geometry of Velocity Increments




The magnitude and direction of the final impulse are defined by the
following equations (see Figure C-4):

2 2 1/2
AVR = [VR+ VT - ZVR VT cos YR]
(3-9)
6 - tan -1 - [VT sin ¢-VR sin (¢-YR)]
R VT cos \p-VR cos (lp-yR)
where
) esin (vL + )
Y, = tan
R l+e cos (v, + )
L
2
VR= 2k rl - 1 > (3-10)
T 2p(l-e )
2 .
VT = k/rT

If it is assumed that the burning rate is constant, and that the thrust
is constant, then the firing times can be approximated by

mo T .
tL = = Ll- exp (- AVL m /T)]

(3-11)
m, .
tR = — [1- exp (—AVR rh/T):|
m .
where
tr is the launch firing time
tR is rendezvous firing time,
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m0 is the initial chaser mass, and

m1=m0-th.

Also, the final mass ratio is given by

BIE

= exp [-(AVL +AavE) z}:/T:] (3-12)

0
A computer program was written to evaluate the various relevant

quantities for a particular set of initial conditions: Vi, vy, Ty é., and
rp. The results shown in Figure C-5 demonstrate that the value of0 yover
a very wide range has very little effect on AV. Similarly, Figure C-6
demonstrates the small effect of {y on mass ratio, Conversely, very small
variations in the magnitude and direction of the velocity increments have
very large effects onthe rendezvous point. This implies that the initial
values of the Lagrange multipliers are similarly sensitive in the calculus
of variations model. This has been verified by computer runs,

4.0 COMPUTER CALCULUS OF VARIATIONS MODEL
The equations of Section 2 were transformed to polar form and are
given below. The geometry is shown in Figure C-7.
r0 +2r8 =- T/m sin (6 - 1)

. . 2
T -r92=r—Tn— cos (6 - n)- k/r

A +2hn= 25X i 200 - )
: 2r (4-1)
. .2
LR W =£>\—— [1+3c052(9-n)]
3 . .
2r
: T
)\5—;7)\.
. v .
r = —= A
m
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CHASER VEHICLE T

Figure C-7 Rendezvous Geometry in Polar Form
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These quantities are related to those in Section 2 follows:

)\1 = N cOs 1
)\Z = \ sin n
X1 =r cos O
X2 =r sin ©
tanXp = -tan n

The relationship between I"'and \ _ is given by

5

r-= N o-h -1 (4-2)

m 5
so that an initial value of I is equivalent to an initial value of \ 5
The investigation of the effects of the initial conditions were carried
out in the following manner. Initial conditions on r, 6, r, and 6 are given,
Since Equations (4-1) are homogeneous in \, the initial value of A is imma-
terial to the trajectory. In order to approximate the two impulse case, a
good guess of the initial value of n is the value of BL determined in Equa-
tion (3-7), and A = 0, n = 0 initially, To observe the effects of these para-
meters, Equations (4-1) are integrated numerically, assuming that the
thrust engine is on initially, i.e., T = 0,

At each instant of time, the transfer orbit that would result if thrust
were terminated at that instant is computed. Thus, instantaneous transfer
orbits are generated. These transfer orbits are shown in Figure C-8.

At time t, the values of r, ;', 0, and 9 known from the integration
of Equations (4-1). Then the semi-major axis, semi-latus rectum, and
true anomaly of the instantaneous tranfer orbit are found from the follow-
ing equations:
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a=—T o (4-3)
2-rV /k
2 +.2
p=(r 0) /k (4-4)
e cCos v = P-7
r
sin v = rzi'é (#-9)
e v = k

This transfer orbit intersects the target when r = rp. Let ¢ be the
central angle subtended between the position at time t and the point where
the instantaneous orbit crosses the target orbit. This angle is given by-

e cos (v+¢)=-r£-—-1

T
(4-6)

e sin (v +¢) = sign (rT - r) V;Z - e2 cos2 (v +¢)

To relate this to time of flight, the eccentric anomaly of the instan-
taneous orbit is computed as follows:

2
(e +ecosv)r

cos E =
ep
(4-7)
. re 'l-e2 sin v
sin E =
ep
When the orbit intersects the target orbit:
2 ,
r
cosET= [e +ecos(v+¢)] T
ep
> (4-8)
r_e l/ l-e sin (v +¢)
. T
sin E__ =
T ep
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Therefore, from Kepler's equation, the time interval corresponding
to the orbit from E to ET is given by:

At = v ik_ [(ET - E) -e (sin ET -sin E)] (4-9)

The angular position of the target when the instantaneous orbit inter-
sects the target orbit is given by:

- & 1/__15_ _
OT-¢O+(t - At) e (4-10)

The angular position of the chaser at this time is:

0, =0+9 (4-11)

Thus the angular error is given by:
A6=6_ -6 (4-12)

These quantities are computed at each time t as the differential
equations are integrated. Intercept occurs if thrust is terminated when
A0 = 0, If I'is initially set equal to zero, then letting

will cause the thrust to terminate at this instant. By varying )‘O’ Mo» Mg
corresponding values of I‘o are obtained for intercept.

5.0 INTERCEPT CONDITIONS

In order to evaluate the effects of small variations in the initial con-
ditions on intercept, the equations of motion were integrated in relative
coordinates to eliminate the numerical difficulties inherent in dealing with
orbits that are close together. Therefore, the following equations were
used. First define
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1 1T (5-1)

where

Then the differential equations of motion of Section 2.0 become:

AR k

= Tm COS n+r 3 (le-g)
T
(5-2)
T k
t',—m51n1']+ 3 (Xzf-t_,)
T
where
_ 5 5.7 2 5.7.9 3
f-3q(1—-2—!q+—3—!—q - T4 q +...)
(5-3)
a= L |x _+ieerx 42 0
2 1T 2 27T 2
T
T
T'=z - whenI'< 0
(5-4)
T'=TwhenI‘2_0

68




and A and n. are defined in Equationé (4-1).

These equations were integrated using initial values obtained by the
methods described in Section 4,0, and small variations were made. The
trajectories were run until target-chaser distance

d=(§2 +§2)1/2

went through a2 minimum. As was expected, this miss distance was extremely
sensitive to initial conditions on the Lagrange multipliers. On the other

hand, small variations cause very small variations in firing time, and hence
have a negligible effect on fuel consumption.
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